水稻果皮花青素含量的全基因组关联分析
作者:
作者单位:

1.湖南农业大学农学院;2.中国科学院亚热带农业生态研究所

基金项目:

湖南省杰出青年基金项目(2021JJ10041)


Genome-wide association analysis of anthocyanin content in rice seed pericarp
Author:
Affiliation:

1.College of Agronomy, Hunan Agricultural University;2.Institute of Subtropical Agriculture, Chinese Academy of Sciences

Fund Project:

Hunan Outstanding Youth Fund (2021JJ10041)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    花青素对人类健康具有重要的保健功能,培育富含花青素的功能性水稻品种是未来绿色健康农业发展的必然需求。然而目前与水稻果皮花青素含量相关的基因资源还十分有限,不利于有色稻米品种的种质创新和遗传改良。为了全面发掘水稻果皮花青素的基因资源,本研究结合花青素无损伤检测和全基因组关联分析方法,以533份水稻种质作为供试材料,检测到了13个果皮花青素含量关联QTL位点,这些QTL位点中包含了除Rc、Rd、Rb及OsMYB3已知与花青素相关的基因外,还包括17个候选基因。通过对候选基因同源性及表达模式分析,初步确定8个MYB基因与1个bHLH基因为新的水稻果皮花青素的候选基因。该研究结果首次全面剖析了水稻果皮花青素的遗传基础,为健康功能性水稻品种的选育提供理论基础与基因资源。

    Abstract:

    Anthocyanins in plants play an important role in modulating human health. The cultivation of rice varieties rich in anthocyanins is inevitable to fulfil the demand for developing green and healthy agricultural practices in the future. However, the current genetic resources related to anthocyanin content in rice pericarp are still limited. This is not conducive to germplasm innovation and genetic improvement of colored rice varieties. To comprehensively explore the genetic resources regulating anthocyanin content in rice pericarp, noninvasive detection of anthocyanin was combined with genome-wide association analysis. Using this approach, 13 QTLs associated with anthocyanin content in the pericarp were detected in 533 rice germplasms. These QTLs included 17 candidate genes in addition to Rc, Rd, Rb, and OsMYB3. Through the analysis of homology and expression patterns of these candidate genes, eight MYB and one bHLH gene were preliminarily identified as novel candidate genes associated with anthocyanin content in rice pericarp. This study comprehensively analyzed the genetic basis of anthocyanins in rice pericarp for the first time, providing a theoretical basis and identifying novel genetic resources for the breeding of healthy functional rice varieties.

    参考文献
    [1] 李鲁华, 王忠妮, 任明见, 等. 谷类作物中植物激素调控花青素合成的研究进展[J]. 山地农业生物学报, 2022, 41(4): 62-66. Li L H, Wang Z N, Ren M J, et al. Research advances of anthocyanin synthesis regulated by phytohormone in cereal crops[J]. Journal of Mountain Agriculture and Biology, 2022, 41(4): 62-66. [2] Fang J. Bioavailability of anthocyanins[J]. Drug Metabolism Reviews, 2014, 46(4): 508-520. [3] 陈琦, 李少伟, 贾宇臣, 等. 蓝莓花青素通过下调p53基因DNA甲基化抑制口腔癌KB细胞增殖及诱导细胞凋亡[J]. 遗传, 2014, 36(6): 566-573. Chen Q, Li S W, Jia Y C, et al. Blueberry anthocyanins induce G2/M cell cycle arrest and apoptosis of oral cancer KB cells through down-regulation methylation of p53[J]. Hereditas, 2014, 36(6): 566-573. [4] Min J Y, Yu S W, Baek S H, et al. Neuroprotective effect of cyanidin-3-O-glucoside anthocyanin in mice with focal cerebral ischemia[J]. Neuroscience Letters, 2011, 500(3): 157-161. [5] Strathearn K E, Yousef G G, Grace M H, et al. Neuroprotective effects of anthocyanin- and proanthocyanidin-rich extracts in cellular models of Parkinson?s disease[J]. Brain Research, 2014, 1555: 60-77. [6] Pacheco S M, Soares M S P, Gutierres J M, et al. Anthocyanins as a potential pharmacological agent to manage memory deficit, oxidative stress and alterations in ion pump activity induced by experimental sporadic dementia of Alzheimer’s type[J]. The Journal of Nutritional Biochemistry, 2018, 56: 193-204. [7] Liu J H, Hao W J, He Z Y, et al. Blueberry and cranberry anthocyanin extracts reduce bodyweight and modulate gut microbiota in C57BL/6 J mice fed with a high-fat diet[J]. European Journal of Nutrition, 2021, 60(5): 2735-2746. [8] 郑菲艳, 郑建华, 王洪飞, 等. 中国有色稻米功能性成分遗传与育种研究进展[J]. 福建农业学报, 2021, 36(1): 115-123. Zheng F Y, Zheng J H, Wang H F, et al. Research progress on genetics and breeding of functional Components in colored rice[J]. Fujian Journal of Agricultural Sciences, 2021, 36(1): 115-123. [9] Friedman M. Rice brans, rice bran oils, and rice hulls: Composition, food and industrial uses, and bioactivities in humans, animals, and cells[J]. Journal of Agricultural and Food Chemistry, 2013, 61(45): 10626-10641. [10] 张启发. 保障粮食安全, 促进营养健康: 黑米主食化未来可期[J]. 华中农业大学学报, 2021, 40(3): 1-2. Zhang Q F. Ensuring food security and promoting nutrition and health: Making black rice staple food for the future[J]. Journal of Huazhong Agricultural University, 2021, 40(3): 1-2. [11] Maeda H, Yamaguchi T, Omoteno M, et al. Genetic dissection of black grain rice by the development of a near isogenic line[J]. Breeding Science, 2014, 64(2): 134-141. [12] Yang X H, Wang J R, Xia X Z, et al. OsTTG1, a WD40 repeat gene, regulates anthocyanin biosynthesis in rice[J]. The Plant Journal: for Cell and Molecular Biology, 2021, 107(1): 198-214. [13] Xu W J, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes[J]. Trends in Plant Science, 2015, 20(3): 176-185. [14] Oikawa T, Maeda H, Oguchi T, et al. The birth of a black rice gene and its local spread by introgression[J]. The Plant Cell, 2015, 27(9): 2401-2414. [15] Zheng J, Wu H, Zhao M C, et al. OsMYB3 is a R2R3-MYB gene responsible for anthocyanin biosynthesis in black rice[J]. Molecular Breeding, 2021, 41(8): 51. [16] Furukawa T, Maekawa M, Oki T, et al. The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp[J]. The Plant Journal: for Cell and Molecular Biology, 2007, 49(1): 91-102. [17] Sun X M, Zhang Z Y, Li J J, et al. Uncovering hierarchical regulation among MYB-bHLH-WD40 proteins and manipulating anthocyanin pigmentation in rice[J]. International Journal of Molecular Sciences, 2022, 23(15): 8203. [18] Meng L Z, Qi C Y, Wang C H, et al. Determinant factors and regulatory systems for anthocyanin biosynthesis in rice apiculi and stigmas[J]. Rice (New York, N Y), 2021, 14(1): 37. [19] Zheng J, Wu H, Zhu H B, et al. Determining factors, regulation system, and domestication of anthocyanin biosynthesis in rice leaves[J]. The New Phytologist, 2019, 223(2): 705-721. [20] Zhao K Y, Tung C W, Eizenga G C, et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa[J]. Nature Communications, 2011, 2: 467. [21] Lu Q, Zhang M C, Niu X J, et al. Genetic variation and association mapping for 12 agronomic traits in indica rice[J]. BMC Genomics, 2015, 16: 1067. [22] Tan Y J, Sun L, Song Q N, et al. Genetic architecture of subspecies divergence in trace mineral accumulation and elemental correlations in the rice grain[J]. Theoretical and Applied Genetics, 2020, 133(2): 529-545. [23] Mao D H, Xin Y Y, Tan Y J, et al. Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(9): 3494-3501. [24] 张东方, 张君, 范晓飞, 等. 应用光谱分析无损测定茄子果皮花青素含量方法[J]. 河北农业大学学报, 2021, 44(3): 62-67. Zhang D F, Zhang J, Fan X F, et al. Nondestructive determination of anthocyanins in eggplant peel by spectral analysis[J]. Journal of Hebei Agricultural University, 2021, 44(3): 62-67. [25] 刘秀英, 刘晨洲, 吴姗微, 等. 玉米叶片花青素相对含量高光谱遥感反演[J]. 遥感信息, 2018, 33(6): 1-8. Liu X Y, Liu C Z, Wu S W, et al. Nondestructive inversion of anthocyanins content in maize leaves using hyperspectral remote sensing[J]. Remote Sensing Information, 2018, 33(6): 1-8. [26] Hu W, Zhou T H, Han Z M, et al. Dominant complementary interaction between OsC1 and two tightly linked genes, Rb1 and Rb2, controls the purple leaf sheath in rice[J]. Theoretical and Applied Genetics, 2020, 133(9): 2555-2566. [27] Kim D H, Yang J, Ha S H, et al. An OsKala3, R2R3 MYB TF, is a common key player for black rice pericarp as main partner of an OsKala4, bHLH TF[J]. Frontiers in Plant Science, 2021, 12: 765049. [28] Vannini C, Locatelli F, Bracale M, et al. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants[J]. The Plant Journal: for Cell and Molecular Biology, 2004, 37(1): 115-127. [29] Qiu J H, Xie J H, Chen Y, et al. Warm temperature compromises JA-regulated basal resistance to enhance Magnaporthe oryzae infection in rice[J]. Molecular Plant, 2022, 15(4): 723-739. [30] Zhang W H, Sun P Y, He Q, et al. Transcriptome analysis of near-isogenic line provides novel insights into genes associated with panicle traits regulation in rice[J]. PLoS One, 2018, 13(6): e0199077. [31] Wang Z G, Zhang B L, Chen Z W, et al. Three OsMYB36 members redundantly regulate Casparian strip formation at the root endodermis[J]. The Plant Cell, 2022, 34(8): 2948-2968. [32] Park D Y, Shim Y, Gi E, et al. The MYB-related transcription factor RADIALIS-LIKE3 (OsRL3) functions in ABA-induced leaf senescence and salt sensitivity in rice[J]. Environmental and Experimental Botany, 2018, 156: 86-95. [33] Hiratsuka S, Onodera H, Kawai Y, et al. ABA and sugar effects on anthocyanin formation in grape berry cultured in vitro[J]. Scientia Horticulturae, 2001, 90(1/2): 121-130. [34] Zhang H, Zhao Y, Zhou D X. Rice NAD+-dependent histone deacetylase OsSRT1 represses glycolysis and regulates the moonlighting function of GAPDH as a transcriptional activator of glycolytic genes[J]. Nucleic Acids Research, 2017, 45(21): 12241-12255. [35] Paul P, Dhatt B K, Miller M, et al. MADS78 and MADS79 are essential regulators of early seed development in rice[J]. Plant Physiology, 2020, 182(2): 933-948.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何展坤,崔延春,徐庆国,毛东海. 水稻果皮花青素含量的全基因组关联分析[J]. 农业现代化研究, 2023, 44(2): 370-380
HE Zhan-kun, CUI Yan-chun, XU Qing-guo, MAO Dong-hai. Genome-wide association analysis of anthocyanin content in rice seed pericarp[J]. Research of Agricultural Modernization, 2023, 44(2): 370-380

复制
分享
文章指标
  • 点击次数:276
  • 下载次数: 1342
  • HTML阅读次数: 870
  • 引用次数: 0
历史
  • 收稿日期:2023-01-16
  • 最后修改日期:2023-03-21
  • 录用日期:2023-03-21
  • 在线发布日期: 2023-05-06
文章二维码
您是第位访问者
版权所有:《农业现代化研究》编辑部
地址:湖南省长沙市芙蓉区远大二路644号
电话:0731-84615231    E-mail:nyxdhyj@isa.ac.cn
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!