数字合作社:产销融合的农业智能系统
CSTR:
作者:
作者单位:

中国科学院自动化研究所,中国科学院自动化研究所,中国科学院自动化研究所,中国科学院自动化研究所,中国科学院科技战略咨询研究院,北京智禾生态科技发展有限公司,浙江省农业科学院数字农业研究所,中国科学院自动化研究所

基金项目:

国家自然科学基金项目(31700315, 61533019);中国科学院与泰国科技发展署合作研究资助项目(GJHZ2076)


Digital cooperatives: Agricultural intelligent system integrating production and market
Author:
Affiliation:

Institute of Automation, Chinese Academy of Sciences,Institute of Automation, Chinese Academy of Sciences,Institute of Automation, Chinese Academy of Sciences,Institute of Automation, Chinese Academy of Sciences,Institutes of Science and Development, Chinese Academy of Sciences,Beijing Zhihe Ecological Technology Development Co., Ltd.,Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences,Institute of Automation, Chinese Academy of Sciences

Fund Project:

National Natural Science Foundation of China (31700315, 61533019); Chinese Academy of Science (CAS) – Thailand National Science and Technology Development Agency (NSTDA) Joint Research Program (GJHZ2076).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | |
  • 资源附件
  • |
  • 文章评论
    摘要:

    产销信息不对称,缺乏资金、知识和经验是小规模农户发展的障碍。作为互助性经济组织,农业合作社的经营受气候、市场和农户水平等自然、经济和社会因素的影响。如何贯通产销信息,并基于需求精细核算成本和组织生产,是合作社经营的重要内容。本文借鉴工业领域数字双胞胎的思想,基于平行智能系统的描述、预测和引导,提出合作社数字四胞胎(数字合作社)的构想,服务合作社规划、准备、生产和评估的各个环节。同时对数字合作社的整体方案、系统设计及其关键技术等进行了描述,并对数字合作社的用户及其运行机制进行了探讨。数字合作社系统框架包括数据感知、决策支持和决策实施,其核心智能技术包括作物建模、动态规划、区块链技术、机器学习等。以有机水稻种植为例,简述了合作社成本分析、种植规划、远程种植可视化等过程,模拟水稻定制种植的场景,以此说明数字合作社的部分功能。数字合作社的概念可为面向合作社的信息系统开发提供方向。鉴于目前以小农经济为主、合作社为主要经营主体的现状,数字合作社系统有助于提升从业者的经营能力,助力小农户对接大市场,提升农业物理社会经济系统的整体效率。

    Abstract:

    The development of small-scale farmers face several obstacles, including the information asymmetry between production and marketing, and the lack of funds, knowledge and experience. Being a cooperative economic organization, the management of agronomic cooperative is influenced by natural, social and economic factors such as the climate conditions, market price, and the ability of farmers. The operation of the cooperative depend mainly on how to connect the information between production and market, evaluate the cost precisely, and organize the production according to the requirement. Learning from the idea of digital twins in industrial field, this paper proposes the concept of digital quads (digital cooperatives) based on the description, prediction, and prescription of parallel intelligent systems. The proposed digital cooperatives serve the cooperative management including planning, preparation, production, assessment, etc. This paper introduces the frame, design and key technologies of digital cooperatives, and discusses the potential user types and operation mechanism. The system consists of data sensing, decision support and decision execution, and the key intelligent technologies include plant modeling, crop planning, block-chain, machine leaning, etc. Taking organic rice cultivation as an example, this paper briefly describes the whole process of cost analysis, crop planning, and visualization of remote planting for cooperatives. The simulation of the contract production process illustrate part functions of cooperative managers. The concept of digital cooperative can provide guidance for the development of cooperative-oriented information systems. Due to the situation that small-scale agronomical economics dominate, and cooperatives are main managing bodies, the digital cooperative is helpful in promoting the capacity of manager, supporting the small-scale farmers to reach big market, and augmenting the overall efficiency of the agricultural physical social economical system.

    参考文献
    [1] FAO. State of Food and Agriculture 2014: Innovation in Family Farming[Z]. Rome, Italy: FAO, 2014.
    [2] Herbel D. Good Practices in Building Innovative Rural Institutions to Increase Food Security[M]. Rome, Italy: FAO, 2012.
    [3] Mojo D, Fischer C, Degefa T. The determinants and economic impacts of membership in coffee farmer cooperatives: Recent evidence from rural Ethiopia[J]. Journal of Rural Studies, 2017, 50: 84-94.
    [4] Ma W, Abdulai A. The economic impacts of agricultural cooperatives on smallholder farmers in rural China[J]. Agribusiness, 2017, 33(4): 537-551.
    [5] Moustier P, Tam P T G, Anh D T, et al. The role of farmer organizations in supplying supermarkets with quality food in Vietnam[J]. Food Policy, 2010, 35(1): 69-78.
    [6] Grashuis J, Ye S U. A review of the empirical literature on farmer cooperatives: Performance, ownership and governance, finance, and member attitude[J]. Annals of Public
    [7] Iliopuulos C. Stakeholder participation in co-operative capital in western agricultural co-operatives[M]//Gijselinckx C, Zhao L, Novkovic S. Co-operative Innovations in China and the West. London: Palgrave Macmillan, 2014: 81-97.
    [8] Iliopoulos C, Valentinov V. Cooperative longevity: Why are so many cooperatives so successful?[J]. Sustainability, 2018, 10(10): 1-8.
    [9] Zheng S, Wang Z, Song S. Farmers’ behaviors and performance in cooperatives in Jilin Province of China: A case study[J]. The Social Science Journal, 2011, 48(3): 449-457.
    [10] 何慧丽, 杨光耀. 农民合作社: 一种典型的本土化社会企业[J]. 中国农业大学学报(社会科学版), 2019, 36(3): 127-136. He H L, Yang G Y. Farmer cooperatives: A typical localized social enterprise[J]. Journal of China Agricultural University (Social Sciences), 2019, 36(3): 127-136.
    [11] 简玮, 朱月季. 海南辣椒产销模式存在的问题与对策[J]. 中国蔬菜, 2019(9): 12-17. Jian W, Zhu Y J. Problems and countermeasures of production-marketing model in Hainan pepper [J]. China Vegetables, 2019(9): 12-17.
    [12] Narrod C, Roy D, Okello J, et al. Public-private partnerships and collective action in high value fruit and vegetable supply chains[J]. Food Policy, 2009, 34(1): 8-15.
    [13] Laudon K C, Traver C G. E-commerce 2016: Business, Technology, Society (12th Edition)[M]. Pearson, 2016: 912.
    [14] Xiong F L. Expert system for decision-making in complex environments[C]. 1986 IEEE Conference on Decision and Control, Athens, Greece: IEEE, 1986.
    [15] Zhang J J, Wang F Y, Wang X, et al. Cyber-physical-social systems: The state of the art and perspectives[J]. IEEE Transactions on Computational Social Systems, 2018, 5(3): 829-840.
    [16] Wang F Y. The emergence of intelligent enterprises: From CPS to CPSS[J]. IEEE Intelligent Systems, 2010, 25(4): 85-88.
    [17] Klerkx L, Jakku E, Labarthe P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda[J]. NJAS - Wageningen Journal of Life Sciences, 2019, 90-91: 100315.
    [18] Kang M Z, Fan X R, Hua J, et al. Managing traditional solar greenhouse with CPSS: A just-for-fit philosophy[J]. IEEE Transactions on Cybernetics, 2018, 48(12): 3371-3380.
    [19] 杨林瑶, 陈思远, 王晓, 等. 数字孪生与平行系统: 发展现状、对比及展望[J]. 自动化学报, 2019, 45(11): 2001-2031. Yang L Y, Chen S Y, Wang X, et al. Digital twins and parallel systems: State of the art, comparisons and prospect[J]. Acta Automatica Sinica, 2019, 45(11): 2001-2031.
    [20] 阳东升, 姜军, 王飞跃. 从平台到体系: 智慧对抗活动机理的演变及其Prea环对策[J]. 指挥与控制学报, 2018, 4(4): 263-271. Yang D S, Jiang J, Wang F Y. From platforms to systems of systems: On mechanism evolution of command confrontation and its PREA loop[J]. Journal of Command and Control, 2018, 4(4): 263-271.
    [21] 刘昕, 王晓, 张卫山, 等. 平行数据: 从大数据到数据智能[J]. 模式识别与人工智能, 2017, 30(8): 673-681. Liu X, Wang X, Zhang W S, et al. Parallel data: From big data to data intelligence[J]. Pattern Recognition and Artificial Intelligence, 2017, 30(8): 673-681.
    [22] Weng Y C, Wang X J, Hua J, et al. Forecasting horticultural products price using ARIMA model and neural network based on a large-scale data set collected by web crawler[J]. IEEE Transaction on Computational Social Systems, 2019, 6(3): 547-553.
    [23] Hua J, Wang X J, Kang M Z, et al. Prediction of crop phenology - A component of parallel agriculture management[C]. Chinese Automation Congress
    [24] Qu H B, Hu B G. Variational learning for generalized associative functional networks in modeling dynamic process of plant growth[J]. Ecological Informatics, 2009, 4(3): 163-176.
    [25] 安冯竞, 喻曦, 孟秋晴. 大数据中农产品质量特征分类效果评估仿真[J]. 计算机仿真, 2018, 35(8): 439-442. An F J, Yu X, Meng Q Q. Simulation of the classification effect of quality characteristics of agricultural products in large data[J]. Computer Simulation, 2018, 35(8): 439-442.
    [26] Fan X R, Kang M Z, Heuvelink E, et al. A knowledge-and-data-driven modeling approach for simulating plant growth: A case study on tomato growth[J]. Ecological Modelling, 2015, 312: 363-373.
    [27] Fan X R, Wang X J, Kang M Z, et al. A knowledge-and-data-driven modeling approach for simulating plant growth and the dynamics of CO2/O2 concentrations in a closed system of plants and humans by integrating mechanistic and empirical models[J]. Computers and Electronics in Agriculture, 2018, 148: 280-290.
    [28] Zhang X, Meng M, Sun X, et al. FactQA: Question answering over domain knowledge graph based on two-level query expansion[J]. Data Technologies and Applications, 2019, 54(1): 34-63.
    [29] Moro A, Raganato A, Navigli R. Entity linking meets word sense disambiguation: A unified approach[J]. Transactions of the Association for Computational Linguistics, 2014, 2: 231-244.
    [30] 王飞跃. 计算实验方法与复杂系统行为分析和决策评估[J]. 系统仿真学报, 2004, 16(5): 893-897. Wang F Y. Computational experiments for behavior analysis and decision evaluation of complex systems[J]. Journal of System Simulation, 2004, 16(5): 893-897.
    [31] Wang F Y. Toward a paradigm shift in social computing: The ACP approach[J]. IEEE Intelligent Systems, 2007, 22(5): 65-67.
    [32] Yalcin H. Phenology monitoring of agricultural plants using texture analysis[C]. 24th Signal Processing and Communication Application Conference (SIU), Zonguldak, Turkey: IEEE, 2016.
    [33] Mccown R L, Hammer G L, Hargreaves J N G, et al. APSIM: A novel software system for model development, model testing and simulation in agricultural systems research[J]. Agricultural Systems, 1996, 50(3): 255-271.
    [34] Ritchie J T, Singh U, Godwin D C, et al. Cereal Growth, Development and Yield[M]. Springer Netherlands, 1998: 79-98.
    [35] Yan H P, Kang M Z, de Reffye P, et al. A dynamic, architectural plant model simulating resource-dependent growth[J]. Annals of Botany, 2004, 93(5): 591-602.
    [36] 王飞跃. 软件定义的系统与知识自动化: 从牛顿到默顿的平行升华[J]. 自动化学报, 2015, 41(1): 1-8. Wang F Y. Software-defined systems and knowledge automation: A parallel paradigm shift from newton to merton[J]. Acta Automatica Sinica, 2015, 41(1): 1-8.
    [37] 康孟珍, 王秀娟, 华净, 等. 平行农业:迈向智慧农业的智能技术[J]. 智能科学与技术学报, 2019, 1(2): 107-117. Kang M Z, Wang X J, Hua J, et al. Parallel agriculture: Intelligent technology toward smart agriculture[J]. Chinese Journal of Intelligent Science and Technology, 2019, 1(2): 107-117.
    [38] 王秀娟, 华净, 康孟珍, 等. 基于区块链技术的透明农场[J]. 智能科学与技术学报, 2019, 1(4): 400-408. Wang X J, Hua J, Kang M Z, et al. Transparent farm based on block chain technology[J]. Chinese Journal of Intelligent Science and Technologies, 2019, 1(4): 400-408.
    [39] Kang M Z, Hua J, Hu B G, et al. QingYuan - A GreenLab based plant simulator and solver[C]. 6th International Workshop on Functioanl-Structural Plant Models (FSPM 10), University of California, Davis, USA, 2010.
    [40] Rutzinger M, Pratihast A K, Elberink S J O, et al. Tree modelling from mobile laser scanning data-sets[J]. Photogrammetric Record, 2011, 26(135): 361-372.
    [41] Kamilaris A, Kartakoullis A, Prenafeta-Boldú F X. A review on the practice of big data analysis in agriculture[J]. Computers
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

康孟珍,王秀娟,王浩宇,华净,董永亮,徐振强,李冬,王飞跃. 数字合作社:产销融合的农业智能系统[J]. 农业现代化研究, 2020, 41(4): 687-698
KANG Meng-zhen, WANG Xiu-juan, WANG Hao-yu, HUA Jing, DONG Yong-liang, XU Zhen-qiang, LI Dong, WANG Fei-yue. Digital cooperatives: Agricultural intelligent system integrating production and market[J]. Research of Agricultural Modernization, 2020, 41(4): 687-698

复制
分享
文章指标
  • 点击次数:1144
  • 下载次数: 4339
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-01-20
  • 最后修改日期:2020-04-20
  • 录用日期:2020-04-20
  • 在线发布日期: 2020-07-28
文章二维码
您是第位访问者
版权所有:《农业现代化研究》编辑部
地址:湖南省长沙市芙蓉区远大二路644号
电话:0731-84615231    E-mail:nyxdhyj@isa.ac.cn
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!