高级检索

基于智能手机和人工神经网络反演小微水体水质参数研究

Research on the inversion of water quality parameters in small and micro water bodies based on smartphone and artificial neural network

  • 摘要: 通过智能手机反演进行环境监测越来越受到关注,目前研究主要利用可见光反射率进行光学活性参数反演。本文基于水质现场监测数据,同步应用智能手机拍照,通过偏振镜、手机望远镜、不同规格滤波片、24色标准色卡,获取水体图像信息,结合逐步回归与人工神经网络方法,开展了长三角地区典型小微水体水质光学参数叶绿素和浊度以及非光学参数可溶性有机碳(dissolved organic carbon,DOC)反演监测。结果表明,研究区水体总体DOC浓度值变异范围在2.73~16.90 mg/L,浊度变异范围在6.53~91.10 NTU,叶绿素a浓度值变异范围在0.36~245.47 μg/L。通过逐步回归方法提取了水体DOC浓度的五个图像特征参数为R1'、B/G2'、R2'、R4'、B/G6',浊度图像特征参数为B/R3'、G5'、R6',叶绿素a的图像特征为B/G1'、R2'、B/G4'。结合人工神经网络模型反演水体水质参数,DOC浓度纳什系数NSE为0.62,浊度NSE为0.65,叶绿素NSE为0.67,具有较高的反演精度。本研究构建了基于智能手机反演水质光学参数的方法,并探讨了非光学参数反演的可行性,为后续开发APP应用程序和反演水质参数提供了基础和依据。

     

    Abstract: Environmental monitoring using smartphones for parameter inversion is gaining increasingly popular, particularly in the field of optical active parameter inversion using visible light reflectance. This paper utilized smartphones to capture water images using polarizers, mobile phone telescopes, filters of different specifications, and 24-color standard color cards. Through stepwise regression and artificial neural network methods, we performed inverse monitoring of optical parameters (chlorophyll and turbidity) and non-optical parameters (DOC) in small water bodies in the Yangtze River Delta region. The results showed that the DOC concentration ranged from 2.73 to 16.90 mg/L, turbidity ranged from 6.53 to 91.10 NTU, and chlorophyll concentration ranged from 0.36 to 245.47 μg/L. Stepwise regression identified five image feature parameters of DOC concentration: R1', B/G2', R2'', R4'', B/G6'. Turbidity image feature parameters were B/R3', G5', R6', and chlorophyll a were B/G1', R2', B/G4'. Combined with the artificial neural network model, the water quality parameters were successfully inverted, with NSE values of 0.62 for DOC concentration, 0.65 for turbidity, and 0.67 for chlorophyll, indicating high inversion accuracy. This study established a method for inverting water quality optical parameters using smartphones and explored the feasibility of inverting non-optical parameters, providing a foundation for the development of smartphone applications and the inversion of water quality parameters.

     

/

返回文章
返回