高级检索

全国统一大市场背景下生猪市场价格风险空间溢出研究

Research on the spatial spillover of hog market price risks in the context of a unified national market

  • 摘要: 生猪市场价格风险空间溢出增加了风险管理的复杂性,深入分析溢出关系对于推进全国统一大市场具有重要理论与现实意义。基于2016年7月—2023年8月30个省份的生猪价格数据,在运用风险价值法(VaR)和期望损失法(ES)对生猪市场风险进行测度的基础上,基于时变参数向量自回归模型的广义预测误差方差分解(TVP-VAR-DY)方法计算风险的动态空间溢出指数,并运用社会网络分析法对省域间风险溢出的网络拓扑结构特征进行探究。实证结果表明:全国生猪市场价格风险水平呈上升趋势,供需失衡与突发事件冲击是引发风险上升的驱动因素。我国生猪市场价格风险溢出存在显著的时变特征且受生猪调运影响,动态总溢出指数随生猪调运政策的变化呈近似“U型”变化趋势,动态方向性溢出指数和动态净溢出指数与生猪跨区调出和调入行为呈强相关性。我国生猪市场价格风险溢出网络结构紧密,整体关联性强,黑龙江、湖北、山东等主要的风险溢出地处于网络核心位置。基于此,提出政府完善生猪市场价格风险管理体系、中小生猪养殖企业抵御市场价格风险、投资者制定合理的投资策略等建议。

     

    Abstract: The spatial spillover of hog market price risks increases the complexity of risk management. In-depth analysis of the spillover relationships holds significant theoretical and practical implications for advancing a unified national market. Based on hog price data from 30 provinces (autonomous regions and municipalities) from July 2016 to August 2023, this study first measures hog market risks using the Value at Risk (VaR) and Expected Shortfall (ES) methods. Subsequently, the Time-Varying Parameter Vector Autoregression-based Generalized Forecast Error Variance Decomposition (TVP-VAR-DY) approach is employed to calculate the dynamic spatial spillover indices of risks, and the social network analysis method is utilized to explore the network topology characteristics of the inter-provincial risk spillovers. Empirical results show that the hog market price risk level in China demonstrates an ascending trajectory, with supply-demand imbalances and unexpected event shocks serving as key drivers of risk escalation. The price risk spillover of hog market exhibits pronounced time-varying characteristics and is influenced by hog transportation activities: The dynamic total spillover index following an approximate U-shaped evolutionary pattern synchronized with adjustments in hog transportation policy, while the dynamic directional spillover index and dynamic net spillover index maintaining strong associations with the cross-regional transfer-out and transfer-in behaviors. The price risk spillover network in China’s hog market exhibits a tightly interconnected structure with robust systemic correlations, where major risk spillover regions, such as Heilongjiang, Hubei, and Shandong, occupy central positions within the network topology. Based on these findings, this study proposes the following targeted recommendations: 1) the governmental agencies should optimize the market price risk management framework; 2) the small-to-medium scale hog producers should mitigate hog market price risk; and 3) investors should formulate rational investment strategies.

     

/

返回文章
返回