高级检索

重组固氮菌提升食叶草耐盐碱性能及其氮肥替代潜力

Inoculation of Pseudomonas fluorescens increases of salt alkali resistance for edible dock and its potential for nitrogen fertilizer substitution

  • 摘要: 高盐碱土壤环境抑制作物生长发育,是盐碱地改良与利用的关键瓶颈。为发展盐碱地生物改良措施,以基因重组固氮菌(转nif基因荧光假单胞菌,CHA0-nif)为供试材料,通过食叶草种子萌发室内试验和氮肥梯度替代盆栽试验,研究基因重组固氮菌在盐碱胁迫下对食叶草种子萌发的影响及其氮肥替代潜力。研究结果表明:1)轻度盐碱胁迫条件下,重组固氮菌对食叶草种子萌发的促生效果弱于野生型菌株;中度盐碱胁迫下,重组固氮菌的种子萌发促进效果优于野生型菌株,前者促进种子发芽率提升13.26%~16.40%、芽长增长8.89%~34.56%;高盐碱胁迫条件下,两种菌株均未表现显著促生效果。2)接种重组固氮菌显著提升盐碱土硝态氮含量,食叶草全生育期硝态氮增加27.25%~54.59%,且减氮10%~30%条件下维持增加趋势。3)接种重组固氮菌促进食叶草根系生物量提升48.02%、地上部生物量提升13.81%、植株总氮累积量提升41.37%;减氮10%和20%配施CHA0-nif时,能实现地上部生物量和植株氮累积量的增幅稳定;减氮30%配施CHA0-nif时,食叶草地上地下部生物量及植株氮累积量大幅度下降,甚至低于单施化肥对照。综上,接种重组固氮菌显著增强食叶草对中度盐碱胁迫(50~100 mmol/L,pH 8.25~8.49)的适应性能,且具有20%化肥氮替代潜力,表现出良好的耐盐碱性能和氮肥替代潜力,为盐碱地改良和作物增产增效提供了新型微生物资源。

     

    Abstract: Highly saline-alkaline soil environments inhibit crop growth and development and are a key bottleneck when attempting to improve and utilize saline-alkaline land. To address the critical challenge of saline-alkaline soil remediation, this study investigated the efficacy of recombinant nitrogen-fixing (nif) bacteria (Pseudomonas fluorescens CHA0-nif) in enhancing seed germination of an edible dock (Rumex spp.) under saline-alkaline stress and their potential to replace chemical nitrogen fertilizers. Indoor germination assays and pot experiments with graded nitrogen reduction (0%, 10%, 20%, 30%) were conducted. Key findings include: 1) Under moderate saline stress, CHA0-nif significantly improved germination rates germination rates by 13.26%~16.40% and shoot elongation by 8.89%~34.56%, outperforming the wild-type strain (WT). No growth promotion was observed under high stress. 2) Soil nitrate nitrogen content increased by 27.25%~54.59% with CHA0-nif inoculation, with sustained enhancement under 10%~20% nitrogen reduction. 3) CHA0-nif increased root biomass by 48.02% and total plant nitrogen accumulation by 41.37%. Stable aboveground biomass and nitrogen uptake were maintained at 20% nitrogen reduction, whereas 30% reduction caused significant declines in all parameters. These results demonstrate that CHA0-nif enhances forage grass adaptation to moderate saline-alkaline stress and enables 20% nitrogen fertilizer replacement, offering a novel microbial strategy for sustainable saline soil rehabilitation.

     

/

返回文章
返回