高级检索

喀斯特山区耕地利用效率时空演变特征及影响因素研究

Spatiotemporal evolution characteristics and influencing factors of cultivated land use efficiency in Karst mountainous areas

  • 摘要: 耕地利用效率提升是有效推动喀斯特山区农业现代化转型的重要举措。本文基于超效率SBM模型测度2000—2020年贵州省88个县(市、区)耕地利用效率,并利用冷热点分析、趋势面分析探究其时空演变特征,采用地理时空加权回归模型探寻其影响因素。结果表明:1)贵州省耕地利用效率总体水平不高,各年份效率值在0.5~0.6之间,未达到有效前沿面,且总体效率呈现波动下降趋势。2)贵州省耕地利用效率呈现出显著的时空分异特征,效率极高值区域在空间上展现出强烈的组团状聚集与条带状集聚分布态势,整体层次清晰且界线明显。3)贵州省耕地利用效率呈现出自西向东、由南至北倒“U”型梯度递增态势,空间趋势线大致保持“北高南低、东高西低”的布局态势,且南北分异更为强烈,表现出明显的空间指向性。4)耕地平均坡度、人均耕地面积、农业机械化程度、人均GDP以及城镇化率是影响贵州省耕地利用效率的主要因素,其效率演变受多因素的多尺度与多维度共同作用,各影响因素表现出明显的时间差异性和空间异质性特征。研究成果可为喀斯特山区提升耕地利用效率、促进耕地保护、生态治理和推动农业现代化发展提供决策参考和科学依据。

     

    Abstract: Improving the utilization efficiency of cultivated land is an important initiative to effectively promote the transformation of agricultural modernization in Karst mountainous areas. This study evaluates the cultivated land use efficiency (CLUE) across 88 counties (cities/districts) in Guizhou Province from 2000 to 2020 by the super-efficiency Slack-Based Measure (SBM) model. Through cold/hot spot analysis, trend surface analysis, and geographically and temporally weighted regression (GTWR) modeling, this paper systematically investigated the spatiotemporal evolution patterns and influencing factors. Results show: 1) the provincial CLUE remains suboptimal, with annual efficiency values ranging between 0.5-0.6, failing to reach the effective production frontier. A fluctuating downward trend characterizes the overall efficiency trajectory; 2) distinct spatiotemporal differentiation patterns emerge, where high-efficiency zones demonstrate pronounced spatial clustering characteristics, forming both concentrated clusters and linear belt-shaped aggregations with clearly demarcated hierarchical boundaries; 3) spatial distribution follows an inverted U-shaped spatial gradient progressive trend from west to east and south to north. The north-south differentiation (manifested as“ higher north, lower south” ) proves more significant than the east-west variation (“ higher east, lower west” ), indicating strong spatial orientation; and 4) multivariate analysis identifies five key determinants: average slope gradient, per capita cultivated land area, agricultural mechanization level, per capita GDP, and urbanization rate. These factors exhibit multi-scale interactions and spatiotemporal heterogeneity in their influence mechanisms. The findings offer valuable decision-making references and scientific evidence for optimizing land utilization, enhancing ecological governance, and advancing agricultural modernization in Karst mountainous regions.

     

/

返回文章
返回